Historically, scientific research expeditions starting in the 19th century have provided occasional sections measuring deep ocean properties (Roemmich et al., 201211). Greater spatial and temporal coverage of temperatures down to about 700 m was obtained using expendable bathythermographs along commercial shipping tracks starting in the 1970s (Abraham et al., 201312). Since the early 2000s, thousands of autonomous profiling floats (Argo floats) have provided high-quality temperature and salinity profiles of the upper 2000 m in ice-free regions of the ocean (Abraham et al., 201313; Riser et al., 201614). Further advances in autonomous floats have been developed that now allow these floats to operate in seasonally ice covered oceans (Wong and Riser, 201115; Wong and Riser, 201315), and more recently to profile the entire depth of the water column down to 4000 or 6000 m (Johnson et al., 201517; Zilberman, 201718) and to include biogeochemical properties (Johnson et al., 201719). Autonomous floats have revolutionised our sampling and accuracy of the global ocean temperature and salinity records and increased certainty and confidence in global estimates of the earth heat (temperature) budget, particularly since 2004 (Von Schuckmann et al., 2014; Roemmich et al., 201520; Riser et al., 201621), as demonstrated by the convergence of observational estimates of the changes in the heat budget of the upper 2000 m (Figure 5.1). New findings using data collected from such observing platforms mark significant progress since AR5.
Physical Chemistry Engel 3rd Edition Pdf Free Down imagine mercury wash
Download: https://urlcod.com/2vGCvj
2ff7e9595c
Comments